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1. INTRODUCTION

The treatment of the geometrical singularity in cylindrical and spherical coordinates
has for many years been a difficulty in the development of accurate finite difference (FD)
and pseudo-spectral (PS) schemes. A variety of numerical procedures for dealing with the
singularity have been suggested. For comparative purposes, some of these are discussed in
the next sections, but the reader is referred to several books and review papers [3, 7, 10] for
more detailed references.

Generally, methods discussed in the literature use pole equations, which are akin to
boundary conditions to be applied at the singular point. The treatment of the pole as a
computational boundary can lead to numerical difficulties. These include the necessity of
special boundary closures for FD schemes (e.g., [11]), undesirable clustering of grid points
in PS schemes (e.g., [12]), and, in FD schemes, the generation of spurious waves which
oscillate from grid point to grid point (so-called two-delta or sawtooth waves, see [4, 26]).

In the present paper we investigate a method for treating the coordinate singularity
whereby singular coordinates are redefined so that data are differentiated smoothly through
the pole, and we avoid placing a grid point directly at the pole. This eliminates the need
for any pole equation. Despite the simplicity of the present technique, it appears to be
an effective and systematic way to treat many scalar and vector equations in cylindrical
and spherical coordinates. A similar technique was used by Merilees [17] for the south
and north pole singularities of spherical coordinates but appears not to have been applied
more generally. Here we show that the technique leads to excellent results for a num-
ber of model problems. The main application we consider is the compressible unsteady
Euler and Navier–Stokes equations in cylindrical coordinates (Section 3). For comparison
with other methods, we also treat the solution of Bessel’s equation in Section 4. Several
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other problems [20] have been treated in an analogous way, but are not repeated here for
brevity.

2. APPROACH

The present treatment of the 1/r n singularities in the radial direction can be summarized
as follows:

(i) A new radial coordinate is defined over both positive and negative radius

r̃ (r, φ) =
{

r if 0 ≤ φ < π

−r if π ≤ φ < 2π
(1)

as depicted in Fig. 1. This transformation has been already used in [7] to solve the Bessel’s
equation, but with a grid point at the pole and using the exact pole equation.

(ii) Differentiation is performed with respect to the new coordinate,r̃ , but on a set of
nodes which avoids the singularity. For FD schemes (on a uniform mesh), for example, we
have

rn = (2n+ 1)1r

2
; n = 0, 1, 2, . . . . (2)

For PS schemes Chebyshev nodes (CN) with even number of points over−1≤ r̃ ≤ 1,

rk=−cos(πk/2Nr + 1), k = 0, 1, . . . ,2Nr + 1 (3)

will be suitable. These should be compared with, for example, the Chebyshev–Lobatto
nodes (CLN) which are defined on 0≤ r ≤ 1 as

rk = 1− cos(kπ/Nr )

2
, k = 0, 1, . . . , Nr (4)

which give clustering around bothr = 0 and 1 and have been recommended for PS solutions
of problems with pole singularities by Huang and Sloan [12].

FIG. 1. Computational and physical domains.
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(iii) Scalar and vector quantities must be transformed appropriately between ther
to ther̃ coordinates. The following simpletransformation ruleholds: when 0≤φ <π all
quantities are the same in both coordinate systems. Forπ ≤φ <2π we multiply any polar
components of a vector quantity, radial derivative, and anyr by −1. For example, the
convective term∂(vr vφ)/∂r has exactly the same form and sign in both coordinates for
0≤φ <π while it has opposite sign (because of multiplication by three negative signs ) for
π ≤φ <2π .

Note that this transformation is only used to calculate the radial derivatives. For the az-
imuthal derivatives the traditional definition of cylindrical coordinate is used. Thus the new
singularity which is generated in the azimuthal direction by redefining the radial coordinate
is avoided. Furthermore, in the axisymmetric case one need not carry the computations over
[−R, R], but instead symmetry conditions can be used to close FD schemes at the point
adjacent to the pole and parity properties may be used in PS schemes to reduce the number
of equations by half. However, we would like to emphasize that the general approachdoes
notdepend on any parity property of the equations and can be used to find non-axisymmetric
solutions. An example is provided in Section 3.

Here we show that the rule of transformation (iii), applied to an arbitrary regular function
f , is consistent with the constraints on the behavior of its Fourier series coefficients near
the pole. Therefore the transformation (iii) has no effect on the regularity of the function
in the new coordinate. We take the Fourier series representation of an arbitrary function
f (r, φ),

f (r, φ) =
∞∑

m=−∞
am(r )e

imφ. (5)

Now, if f is a regular scalar quantity, we must require thatam(r )= r |m|bm(r 2) asr→ 0,
wherebm(r 2) is a regular function ofr 2 [14]. In the(r̃ , φ̃) coordinates the same represen-
tation is valid for 0≤φ <π . If π ≤φ <2π we substituteφ= φ̃+π andr =−r̃ . Hence

f (r, φ) =
∞∑

m=−∞
am(−r̃ )eim(φ̃+π) =

∞∑
m=−∞

am(−r̃ )(−1)meimφ̃ . (6)

But asr→ 0, we haveam(−r̃ )(−1)m=am(r̃ ) (see [14]), and thus the regularity of the
function f is preserved in the new coordinate(r̃ , φ̃). The rule of transformation (iii) can
be justified by applying the preceding analysis to functions of the formr n f (r, φ), radial
derivatives off , and vector quantities.

In spherical coordinates(r, φ, θ) the pole singularities are caused by two factors:r→ 0
and sin(φ)→ 0. The singularity of radial derivatives atr = 0 can be treated as described
above for cylindrical coordinates, i.e., by extendingr to negative values and shifting the grid
points in the radial direction by1r/2 so that there is no grid point atr = 0. The singularities
atφ= 0 andπ can be handled using a similar strategy (see Merilees [17] and Mohseni [20]).

The maximum allowable timestep for convective problems is usually controlled by the
Courant–Friedrichs–Lewy (CFL) number. The effect of grid distributions on the CFL num-
ber has been the subject of previous research [3, 1]. Here we compare the CFL requirements
for the present and conventional grid distributions.

A conservative estimate for the CFL number will depend on the minimum mesh spacing
in any of the three coordinate directions. To simplify the argument, in the rest of this section
we assume that the CFL criteria are the same in all directions.
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For axisymmetric problems, the conventional grid defined byrn= n1r ; n= 0, 1, 2, . . . ,
gives a CFL constraint which is dependent on1r . Despite the grid point at1r/2 in the
modified grid (Eq. (2)) numerical experiments confirm that the CFL number continues to
scale with1r . Fornon-axisymmetricproblems, the situation is different. ForNφ Fourier or
FD modes in the azimuthal direction, the minimum length of the mesh in theφ-direction
is nowπ1r/Nφ , half of the value for a conventional grid with the first node at1r . Thus
with no further modification, the maximum time step in the present approach is a factor
of two smaller than other approaches. In either case, the CFL constraint isvery restrictive
in non-axisymmetric cylindrical coordinates, the minimum time step being proportional to
the product of the grid spacing inr andφ.

In both cases it is possible to alleviate this constraint by explicitly filtering the results in the
φ direction, as has been suggested by many investigators (e.g., [3] and references therein).
Since the solution is periodic in theφ direction it is possible to employ a sharp spectral
filter at a particular cutoff wavenumber. For grids defined byrn= n1r ; n= 0, 1, 2, . . . , the
effective mesh spacing in theφ direction becomes1xφ = 2π1r/Nf φ along the circle at
r = 1r , whereNf φ is the number of nodes retained. Thus if 7 or fewer nodes are retained
the CFL constraint will be dictated by1r . The maximal number of nodes ofNf φ ≈ 2πn
that should be retained at different radial locationsrn follows in an analogous way. For the
present grid, the first node is placed at1r/2; then we need merely retain fewer Fourier
modes (at mostNf φ ≈ πn) at eachrn, so that the CFL constraint depends on1r alone (see
[20] for numerical validation).

In PS methods, the clustering of node points near the boundaries also has an impact
on the maximum CFL number. Since the pole is traditionally considered as a boundary
point, the same clustering occurs at the poles (e.g., [12]). Fornberg [7] noticed that it is
possible to alleviate the quadratic clustering of nodes near the origin, by defining the radial
coordinate as in Eq. (1). We observe the same property in our grid distribution, except
that our grid points are shifted so that no grid point is located at the pole. Therefore, one
can choose the grid distribution in ther̃ coordinate to dramatically increase the maximum
timestep required for stability around the centerline for PS methods compared to other grid
distributions. In fact, using the distributions given above, it can easily be shown that the
distance from the centerline to the first node away from the centerline isNr /π times greater
for the CN distribution than for the CLN distribution, in the limit of largeNr . Thus the
maximum timestep increases also by this factor.

Finally, we would like to point out that the present approach should not be confused with
the idea of staggered grids (e.g., [6]). Here, we use the co-located discretization where the
nodes are chosen to avoid singularities. Staggered grids require further modifications as
discussed in [20].

3. COMPRESSIBLE NAVIER–STOKES EQUATIONS

We consider solution of the Navier–Stokes and Euler equations in cylindrical coordinates.
One approach which has been used in the past is to superpose a Cartesian coordinate system
at the singularity as was done, for example, in recent compressible jet calculations by
Mitchell et al. [18, 19] and Freundet al. [8]. A different approach was used by Griffin
et al. [11], where l’Hopital’s rule was used to the singular terms in the NS equations to
derive a new set of equations valid at the centerline. These equations are then solved by
one-sided difference schemes at the centerline. They observed a significant loss of accuracy
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when the biased difference scheme used at the centerline was less accurate than the interior
scheme. Various other schemes for the Navier–Stokes equations in cylindrical coordinates
have been given in the literature [1, 15, 21, 22, 25].

Aside from the centerline treatment, the details of the numerical scheme used in this
work are similar to the approach of Freundet al. [8]. At the outer radial boundary non-
reflecting boundary conditions are implemented [9]. In the radial direction we use a sixth
order accurate compact Pad´e scheme [13] and in the azimuthal direction a Fourier spectral
method is used. For the purposes of this paper, only flows which are uniform in the axial
direction are considered. Fourth order Runge–Kutta time advancement is used to advance
the solution to the next timestep. This combination of high-order-accurate compact finite
difference schemes and explicit Runge–Kutta time advancements has now been used in
many codes developed for solving problems in compressible turbulence and aeroacoustics
(e.g., [5, 8, 18, 19]).

For the centerline treatment, we implement two approaches: the first (CL1) uses the
coordinate transformation and grid distribution discussed in the last section; the other (CL2)
solves the equations in Cartesian coordinates at the centerline [8, 19, 18].

As an example, consider the propagation of a Gaussian acoustic pulse with unit variance
located, initially, off-centered at(r = 1, φ= 0) in cylindrical coordinates. The specific head
ratio is 1.4. The outer radial non-reflecting boundary is placed atr = 8. The grid is 81 by
64 nodes in the radial and azimuthal directions, respectively. The acoustic pulse initially
has the form of a small amplitude pressure and density disturbance superposed on their
(constant) ambient values. In the present example, we take the magnitude of the acoustic
pulse to be very small (10−6) such that nonlinear effects are minimal and an exact solution
to the linearized version of this problem can be found [23] and compared to the numerical
solution. In what follows, we give the density of the acoustic wave (less the ambient density)
relative to the ambient density. Lengths are normalized by the variance (width) of the initial
Gaussian pulse, and time is normalized using this length and the ambient sound speed. The
timestep for these calculations is1t = 0.003125.

In addition to a greater ease of implementation, we find that in viscous computations,
method CL1 is stable with a much smaller viscosity (higher Re) than CL2. Long time insta-
bility of the inviscid method is characteristic of non-dissipative (centered) finite difference
schemes in general and is not directly a consequence of the coordinate singularity. The
instability is believed to result from aliasing of energy onto the highest wavenumbers sup-
ported by the grid (sawtooth waves) and repeated reflections (and, indeed, amplification)
of these waves by the non-periodic boundaries. In Fig. 2 the numerical solution of inviscid
equations for method CL1 is shown for times 2 and 4. The absolute errors are plotted for
both CL1 and CL2 at timet = 2 in Fig. 3. For CL2, poorly resolved sawtooth waves can
be seen. It is clear that they are produced by the centerline treatment since the pulse is
initially located off-center atr = 1. These short wavelength disturbances are continuously
produced at the centerline. They are similar to the sawtooth waves studied by Trefethen
[24], Vichnevetsky [26], and Colonius [4], where it has been shown that they can propagate
at physically inappropriate (large and with incorrect sign) group velocities and that they
are converted to smooth (well-resolved) waves upon interaction with boundary conditions
(in this case at bothr = 0 andr = R). By contrast, such spurious waves are not evident for
treatment CL1, and the error (Fig. 3a) is centered at the center of the acoustic pulse and is
almost 2 orders of magnitude smaller than CL2. This error is apparently controlled only by
the finite resolution.
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FIG. 2. Numerical solution (density perturbation relative to initial amplitude) for method CL1 at (a)t = 2,
(b) t = 4.

4. BESSEL’S EQUATION

To compare the method described above to previous treatments, we consider PS and FD
solutions of Bessel’s equation in cylindrical and spherical coordinates:

1

r a

d

dr

(
r a dy

dr

)
− n(n+ a− 1)

r 2
y = −λy, 0≤ r ≤ 1, (7)

wheren≥ 0, anda= 1, 2 for Bessel’s and spherical Bessel’s equations, respectively. The
boundary condition for both equations is given byy(1)= 0. The eigenvalues for the Bessel’s
equation are given analytically byλnp= r 2

np, wherernp are the zeros of the Bessel’s functions
J: Jn(rnp)= 0, p= 1, 2, . . . . The solution to the equation is the spherical Bessel’s equation
jn(r ′np), wherer ′np are the zeros ofjn(r ′np), p= 1, 2, . . . and the eigenvalues areλnp= r ′2np.

For Bessel’s equation, Gottlieb and Orszag [10] improved the convergence of their
Chebyshev tau method by using the pole conditiony′(0)= 0. Huang and Sloan [12] showed
that this pole condition does not give spectral accuracy forn= 1. They derived an improved

FIG. 3. Absolute error in solution att = 2 relative to the initial amplitude of the pulse for (a) CL1, (b) CL2.
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pole condition forn= 1 to preserve the spectral accuracy. Fornberg [7] used these pole equa-
tions but he changed the definition of the cylindrical coordinate (Eq. (1)) to allow the radial
grid to run through the pole. In addition to more accuracy, he notes the possible advantage
of not having a clustering of the nodes nearr = 0. Note that unlike the present approach a
node, and therefore a pole equation, is used at the singularity,r = 0. Recently, Matsushima
and Marcus [16] found a new set of basis functions defined by a singular Sturm–Lioville
equation so that the pole condition is maintained. They applied their method successfully
to Bessel’s equation and the vorticity transport equation on a unit disk.

Here the present method is employed to solve Bessel’s equation with a PS method based
on Lagrange’s interpolation formula [12] but without any pole conditions. We use the parity
property of Bessel’s equation to reduce the calculation to only the positive half of the
Chebyshev node distribution considered in Section 2:

rk = cos

(
π(k− Nr )

2Nr + 1

)
, k = 0, 1, . . . , Nr . (8)

In Fig. 4 the convergence of the numerical solution to the exact eigenvalue is shown.
The relative errors for the first eigenvalue,λn1, for n = 7 and 49 are plotted for various PS
schemes and a second order FD method with the present treatment of the singularity.

All of the solutions are very accurate, and for largeN it becomes difficult to compare
the relative accuracy of the schemes, since the error becomes dominated by roundoff even
with double precision arithmetic. To overcome this problem and make reliable comparisons
between methods, we recomputed the results with sufficient precision arithmetic using the
Mathematica[27] program when necessary.

Apparently the new pole treatment gives spectral convergence and is more accurate
for all N than that of Refs. [12, 16]. Matsushima and Marcus [16] pointed out that the
spectral convergence of the Chebyshev expansion of Gottlieb and Orszag [10] deteriorates
significantly asn becomes large. This effect was attributed to the shifting of the oscillatory
part of the Bessel function moving toward the outer boundary asn increases. It is clear from
the figure that our PS approach is not suffering from the oscillatory behavior of the solution
near the boundary and gives better convergence. Finally, similar results forn = 1 presented
by Fornberg [7] overlap with our results forn= 1. However, his results were obtained using

FIG. 4. First eigenvalues of the Bessel equation for (a)n= 7, (b)n= 49.n, Huang and Sloan [12];,, second
order FD;d, present approach;e, Gottlieb and Orszag [10];j, Matsushima and Marcus [16].
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an exact pole equation which is not available for more complex equations, such as those
considered in the previous section.

Finally the smallest eigenvalue of the spherical Bessel equation was also calculated
numerically, and with the identical conclusions (see [20] for detail).
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