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1. INTRODUCTION

The treatment of the geometrical singularity in cylindrical and spherical coordinat
has for many years been a difficulty in the development of accurate finite difference (F
and pseudo-spectral (PS) schemes. A variety of numerical procedures for dealing with
singularity have been suggested. For comparative purposes, some of these are discus
the next sections, but the reader is referred to several books and review papers [3, 7, 1(
more detailed references.

Generally, methods discussed in the literature use pole equations, which are aki
boundary conditions to be applied at the singular point. The treatment of the pole &
computational boundary can lead to numerical difficulties. These include the necessit
special boundary closures for FD schemes (e.g., [11]), undesirable clustering of grid pc
in PS schemes (e.g., [12]), and, in FD schemes, the generation of spurious waves w
oscillate from grid point to grid point (so-called two-delta or sawtooth waves, see [4, 2€

In the present paper we investigate a method for treating the coordinate singuls
whereby singular coordinates are redefined so that data are differentiated smoothly thre
the pole, and we avoid placing a grid point directly at the pole. This eliminates the ne
for any pole equation. Despite the simplicity of the present technique, it appears to
an effective and systematic way to treat many scalar and vector equations in cylindr
and spherical coordinates. A similar technique was used by Merilees [17] for the so
and north pole singularities of spherical coordinates but appears not to have been ap
more generally. Here we show that the technique leads to excellent results for a n
ber of model problems. The main application we consider is the compressible unste
Euler and Navier—Stokes equations in cylindrical coordinates (Section 3). For compari
with other methods, we also treat the solution of Bessel’s equation in Section 4. Sev
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788 MOHSENI AND COLONIUS

other problems [20] have been treated in an analogous way, but are not repeated her
brevity.

2. APPROACH

The present treatment of thérT' singularities in the radial direction can be summarizec
as follows:

(i) A new radial coordinate is defined over both positive and negative radius

r”(r,¢>)={r f0<¢p<m )

—r ifr<¢<2n
as depicted in Fig. 1. This transformation has been already used in [7] to solve the Bes:
equation, but with a grid point at the pole and using the exact pole equation.
(ii) Differentiation is performed with respect to the new coordinatdyut on a set of

nodes which avoids the singularity. For FD schemes (on a uniform mesh), for example,
have

_(@n+DAr

; n=012.... 2
. @

n
For PS schemes Chebyshev nodes (CN) with even number of points-tivef < 1,
re=—cogmk/2N; + 1), k=0,1,....2N; +1 (€)]

will be suitable. These should be compared with, for example, the Chebyshev—-Lob:
nodes (CLN) which are defined on<r <1 as

1—cogkm/N;)

5 ., k=01_...,N (4)

Mg =

which give clustering around both= 0 and 1 and have been recommended for PS solutior
of problems with pole singularities by Huang and Sloan [12].
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FIG. 1. Computational and physical domains.
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(iif) Scalar and vector quantities must be transformed appropriately between th
to thef coordinates. The following simpkeansformation ruleholds: when G< ¢ < 7 all
guantities are the same in both coordinate systemsrFo¢p < 27 we multiply any polar
components of a vector quantity, radial derivative, and maryy —1. For example, the
convective termd (vrvy)/0r has exactly the same form and sign in both coordinates f
0 < ¢ < while it has opposite sign (because of multiplication by three negative signs ) 1
T<¢<2nm.

Note that this transformation is only used to calculate the radial derivatives. For the
imuthal derivatives the traditional definition of cylindrical coordinate is used. Thus the ne
singularity which is generated in the azimuthal direction by redefining the radial coordin
is avoided. Furthermore, in the axisymmetric case one need not carry the computations
[—R, R], but instead symmetry conditions can be used to close FD schemes at the p
adjacent to the pole and parity properties may be used in PS schemes to reduce the nt
of equations by half. However, we would like to emphasize that the general apploesh
notdepend on any parity property of the equations and can be used to find non-axisymm
solutions. An example is provided in Section 3.

Here we show that the rule of transformation (iii), applied to an arbitrary regular functic
f, is consistent with the constraints on the behavior of its Fourier series coefficients r
the pole. Therefore the transformation (iii) has no effect on the regularity of the functi
in the new coordinate. We take the Fourier series representation of an arbitrary func

fr. ¢),

[o¢]
frg)= > amr)e™. ()
m=—o00
Now, if f is a regular scalar quantity, we must require #atr) =r by, (r?) asr — 0,
wherebnm(r2) is a regular function of2 [14]. In the (f, ¢) coordinates the same represen-
tation is valid for 0< ¢ < 7. If = < ¢ < 27 we substitutep = ¢ + = andr = —F. Hence

(o] oo
forg)= Y an(=NHem™ = 3" an(-i)(-nmem™. (6)
m=—o0 M=—00

But asr — 0, we havean,(—F)(—1)™ =an(F) (see [14]), and thus the regularity of the
function f is preserved in the new coordinafe ¢). The rule of transformation (iii) can
be justified by applying the preceding analysis to functions of the fdrfnr, ¢), radial
derivatives off , and vector quantities.

In spherical coordinates, ¢, 6) the pole singularities are caused by two factors: 0
and siri¢) — 0. The singularity of radial derivatives at=0 can be treated as described
above for cylindrical coordinates, i.e., by extendirtg negative values and shifting the grid
points in the radial direction bkr /2 so that there is no grid pointiat= 0. The singularities
at¢ = 0 andr can be handled using a similar strategy (see Merilees [17] and Mohseni [2(

The maximum allowable timestep for convective problems is usually controlled by t
Courant—Friedrichs—Lewy (CFL) number. The effect of grid distributions on the CFL nur
ber has been the subject of previous research [3, 1]. Here we compare the CFL requiren
for the present and conventional grid distributions.

A conservative estimate for the CFL number will depend on the minimum mesh spac
in any of the three coordinate directions. To simplify the argument, in the rest of this sect
we assume that the CFL criteria are the same in all directions.
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For axisymmetric problems, the conventional grid definedaynAr; n=0,1, 2, ...,
gives a CFL constraint which is dependent An. Despite the grid point air /2 in the
modified grid (Eq. (2)) numerical experiments confirm that the CFL number continues
scale withAr . Fornon-axisymmetriproblems, the situation is different. Fily, Fourier or
FD modes in the azimuthal direction, the minimum length of the mesh igttieection
is nowm Ar /Ny, half of the value for a conventional grid with the first nodeAsit Thus
with no further modification, the maximum time step in the present approach is a fac
of two smaller than other approaches. In either case, the CFL constraaryigestrictive
in non-axisymmetric cylindrical coordinates, the minimum time step being proportional
the product of the grid spacing inande¢.

Inboth casesitis possible to alleviate this constraint by explicitly filtering the results in tl
¢ direction, as has been suggested by many investigators (e.g., [3] and references the
Since the solution is periodic in thi direction it is possible to employ a sharp spectral
filter at a particular cutoff wavenumber. For grids defined /by nAr;n=0,1, 2, ..., the
effective mesh spacing in thg direction becomeax, =27 Ar /N, along the circle at
r = Ar, whereNi4 is the number of nodes retained. Thus if 7 or fewer nodes are retain
the CFL constraint will be dictated bgr. The maximal number of nodes df; ~ 27 n
that should be retained at different radial locationfollows in an analogous way. For the
present grid, the first node is placedt/2; then we need merely retain fewer Fourier
modes (at mosi¢, ~ 7 n) at eaclry, so that the CFL constraint depends/mnalone (see
[20] for numerical validation).

In PS methods, the clustering of node points near the boundaries also has an im
on the maximum CFL number. Since the pole is traditionally considered as a bound
point, the same clustering occurs at the poles (e.g., [12]). Fornberg [7] noticed that i
possible to alleviate the quadratic clustering of nodes near the origin, by defining the ra
coordinate as in Eq. (1). We observe the same property in our grid distribution, exc
that our grid points are shifted so that no grid point is located at the pole. Therefore, «
can choose the grid distribution in tiieoordinate to dramatically increase the maximum
timestep required for stability around the centerline for PS methods compared to other
distributions. In fact, using the distributions given above, it can easily be shown that 1
distance from the centerline to the first node away from the centerlide/is times greater
for the CN distribution than for the CLN distribution, in the limit of larg&. Thus the
maximum timestep increases also by this factor.

Finally, we would like to point out that the present approach should not be confused w
the idea of staggered grids (e.g., [6]). Here, we use the co-located discretization where
nodes are chosen to avoid singularities. Staggered grids require further modification
discussed in [20].

3. COMPRESSIBLE NAVIER-STOKES EQUATIONS

We consider solution of the Navier—Stokes and Euler equations in cylindrical coordinat
One approach which has been used in the past is to superpose a Cartesian coordinate s
at the singularity as was done, for example, in recent compressible jet calculations
Mitchell et al. [18, 19] and Freuncbt al. [8]. A different approach was used by Griffin
et al. [11], where I'Hopital’'s rule was used to the singular terms in the NS equations
derive a new set of equations valid at the centerline. These equations are then solve
one-sided difference schemes at the centerline. They observed a significant loss of acct
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when the biased difference scheme used at the centerline was less accurate than the ir
scheme. Various other schemes for the Navier—Stokes equations in cylindrical coordin
have been given in the literature [1, 15, 21, 22, 25].

Aside from the centerline treatment, the details of the numerical scheme used in
work are similar to the approach of Freuatlal. [8]. At the outer radial boundary non-
reflecting boundary conditions are implemented [9]. In the radial direction we use a si;
order accurate compact Ragcheme [13] and in the azimuthal direction a Fourier spectr
method is used. For the purposes of this paper, only flows which are uniform in the &
direction are considered. Fourth order Runge—Kutta time advancement is used to adv
the solution to the next timestep. This combination of high-order-accurate compact fir
difference schemes and explicit Runge—Kutta time advancements has now been us
many codes developed for solving problems in compressible turbulence and aeroacou
(e.g., [5, 8, 18, 19)).

For the centerline treatment, we implement two approaches: the first (CL1) uses
coordinate transformation and grid distribution discussed in the last section; the other (C
solves the equations in Cartesian coordinates at the centerline [8, 19, 18].

As an example, consider the propagation of a Gaussian acoustic pulse with unit vari
located, initially, off-centered & =1, ¢ = 0) in cylindrical coordinates. The specific head
ratio is 1.4. The outer radial non-reflecting boundary is placed=a8. The grid is 81 by
64 nodes in the radial and azimuthal directions, respectively. The acoustic pulse initi
has the form of a small amplitude pressure and density disturbance superposed on
(constant) ambient values. In the present example, we take the magnitude of the aco
pulse to be very small (1) such that nonlinear effects are minimal and an exact solutio
to the linearized version of this problem can be found [23] and compared to the numer
solution. In what follows, we give the density of the acoustic wave (less the ambient dens
relative to the ambient density. Lengths are normalized by the variance (width) of the ini
Gaussian pulse, and time is normalized using this length and the ambient sound speed
timestep for these calculationsAg = 0.003125.

In addition to a greater ease of implementation, we find that in viscous computatio
method CL1 is stable with a much smaller viscosity (higher Re) than CL2. Long time ins
bility of the inviscid method is characteristic of non-dissipative (centered) finite differen
schemes in general and is not directly a consequence of the coordinate singularity.
instability is believed to result from aliasing of energy onto the highest wavenumbers s
ported by the grid (sawtooth waves) and repeated reflections (and, indeed, amplificat
of these waves by the non-periodic boundaries. In Fig. 2 the numerical solution of invis
equations for method CL1 is shown for times 2 and 4. The absolute errors are plotted
both CL1 and CL2 at timé=2 in Fig. 3. For CL2, poorly resolved sawtooth waves car
be seen. It is clear that they are produced by the centerline treatment since the pul
initially located off-center at = 1. These short wavelength disturbances are continuous
produced at the centerline. They are similar to the sawtooth waves studied by Trefet
[24], Vichnevetsky [26], and Colonius [4], where it has been shown that they can propag
at physically inappropriate (large and with incorrect sign) group velocities and that tt
are converted to smooth (well-resolved) waves upon interaction with boundary conditi
(in this case at both=0 andr = R). By contrast, such spurious waves are not evident fc
treatment CL1, and the error (Fig. 3a) is centered at the center of the acoustic pulse a
almost 2 orders of magnitude smaller than CL2. This error is apparently controlled only
the finite resolution.
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FIG. 2. Numerical solution (density perturbation relative to initial amplitude) for method CL1 at£ap,
(b)t = 4.

4. BESSEL'S EQUATION

To compare the method described above to previous treatments, we consider PS an
solutions of Bessel's equation in cylindrical and spherical coordinates:
i;(ragf) —n(ntiil)yz—ky, 0<r=<1, @)
wheren > 0, anda =1, 2 for Bessel's and spherical Bessel's equations, respectively. Tl
boundary condition for both equations is givenyt) = 0. The eigenvalues for the Bessel’s
equation are given analytically by, = rﬁp, wherer,,, are the zeros of the Bessel's functions
J:dn(rap) =0, p=1, 2,.... The solution to the equation is the spherical Bessel's equatic
jn(ryp), whererp o are the zeros ofn(ry,), p=1,2, ... and the eigenvalues akg, = r,qu.

For Bessel's equation, Gottlieb and Orszag [10] improved the convergence of th
Chebyshev tau method by using the pole condiji@l) = 0. Huang and Sloan [12] showed
that this pole condition does not give spectral accuracy ferl. They derived an improved
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FIG. 3. Absolute error in solution at= 2 relative to the initial amplitude of the pulse for (a) CL1, (b) CL2.
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pole condition fon = 1 to preserve the spectral accuracy. Fornberg [7] used these pole ec
tions but he changed the definition of the cylindrical coordinate (Eqg. (1)) to allow the rad
grid to run through the pole. In addition to more accuracy, he notes the possible advan
of not having a clustering of the nodes neat 0. Note that unlike the present approach a
node, and therefore a pole equation, is used at the singufatitQ, Recently, Matsushima
and Marcus [16] found a new set of basis functions defined by a singular Sturm—Liovi
equation so that the pole condition is maintained. They applied their method successt
to Bessel’s equation and the vorticity transport equation on a unit disk.

Here the present method is employed to solve Bessel's equation with a PS method b
on Lagrange’s interpolation formula [12] but without any pole conditions. We use the par
property of Bessel's equation to reduce the calculation to only the positive half of t
Chebyshev node distribution considered in Section 2:

w(k—Np)
Me cos( N 1 ) 01....N (8)

In Fig. 4 the convergence of the numerical solution to the exact eigenvalue is sho
The relative errors for the first eigenvalugg, for n = 7 and 49 are plotted for various PS
schemes and a second order FD method with the present treatment of the singularity.

All of the solutions are very accurate, and for lafgdat becomes difficult to compare
the relative accuracy of the schemes, since the error becomes dominated by roundoff
with double precision arithmetic. To overcome this problem and make reliable comparisi
between methods, we recomputed the results with sufficient precision arithmetic using
Mathematicg27] program when necessary.

Apparently the new pole treatment gives spectral convergence and is more accu
for all N than that of Refs. [12, 16]. Matsushima and Marcus [16] pointed out that tl
spectral convergence of the Chebyshev expansion of Gottlieb and Orszag [10] deteriol
significantly am becomes large. This effect was attributed to the shifting of the oscillato
part of the Bessel function moving toward the outer boundaryiasreases. Itis clear from
the figure that our PS approach is not suffering from the oscillatory behavior of the solut
near the boundary and gives better convergence. Finally, similar resuttsfdrpresented
by Fornberg [7] overlap with our results for="1. However, his results were obtained using

log, ¢ of relative error
log, of relative error

FIG. 4. Firsteigenvalues of the Bessel equation fom(a) 7, (b)n =49.A, Huang and Sloan [12}/, second
order FD;@®, present approacky, Gottlieb and Orszag [10M, Matsushima and Marcus [16].
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an exact pole equation which is not available for more complex equations, such as tf
considered in the previous section.

Finally the smallest eigenvalue of the spherical Bessel equation was also calculz

numerically, and with the identical conclusions (see [20] for detail).
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